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The Dirac problem of the Hamiltonian formalism of systems with constraints and the realization of constraints by small masses 
[1, 2] is considered. It is shown that, with a mass tending towards zero under certain initial conditions, limiting motions exist and 
match the motions of the Hamiltonian system with constraints. The results obtained are used in the problem of realizing a unilateral 
holonomic constraint. ¢~ 2000 Elsevier Science Ltd. All fights reserved. 

It is well known that, to describe the motion of Hamiltonian systems with constraints, it is possible to 
use the so-called "generalized Dirac Hamiltonian formalism" [1, 2]. The Dirac problem reduces to an 
investigation of the variational Lagrange problem [2, 3], and here the Lagrange function is singular 
with respect to velocities. It has been shown [2] that a constraint can be realized by small masses, and 
solutions of the singularly perturbed equations obtained can be sought in the form of formal expansions 
in series in powers of a small parameter. 

Below it is shown that, when a mass tends to zero, limiting motions exist (for an appropriate choice 
of the initial conditions), and the formal series indicated are asymptotic. These results are applied to 
the problem of realizing a unilateral holonomic constraint by elastic forces. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Following the well-known approach [2], we shall examine a Hamiltonian system on a manifold M of 
dimension 2n with Hamiltonian 

H = Ho(p,q,Q)+ p2 1(2e)+~.Hl(p,q,Q,~ ) (1.1) 

where e > 0 is a small parameter, and the function H 0 is not degenerate with respect to the momenta 
p. Here {p, q} e R 2n-2. We shall assume that all the functions are smooth. 

The constraint iis set by the equality P = 0, and in this case the compatibility condition 

{P, Ho} = -Hoq = 0 (1.2) 

must be satisfied. 
Let Q = f(p, q) be the solution of Eqs (1.2). It was shown in [2] that the Hamiltonians of the Dirac 

equation with a constraint take the form 

/~ = -H;¢,  4 = H;p, P = 0, Q = f (1.3) 

where Ho(p, q) = Ho(p, q, Q) I Q=f. We shall assume that 

Q~Q=! > 0 (1.4) HoQQ(P, q, 

Here and below, the subscripts Q, q,p, etc. denote partial derivatives with respect to the corresponding 
variables. 
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2. A T H E O R E M  ON TAKI NG THE L I M I T  

Letp0 and q0 - the solutions of Eqs (1.3) - exist in the time interval [0, 7]. Let p, q, P and Q be the 
solution of Hamilton's equations with Hamiltonian (1.1). We shall assume that, at the initial instant of 
time, the following relations are satisfied 

Ip (O) -po(O) l+lq(O) -qo(O) l< . f~ ,  IQ(O)-f(po(O),qo(O))l<.~/-d, IP(0) l<e  (2.1) 

Theorem. For sufficiently small e in the interval [0, T], the following estimates hold 

Q - f (Po,  qo) = O('vr-~), P = O(e.), I p - Po I = O(.qr~), I q - qo I= O(.fE) 

Proof. It is convenient to expand the function Ho of Hamiltonian (1.1) in a series in powers of 
(Q -f) 

= Ho(p,q)+ I HOQQIQ=/(Q - f(p,q))2 + O(Q- f)3 no +... 

H~(p,q) = no (p ,q , f (p ,q ) )  

Note that HoQlo=f = 0, since Q = f(p, q) is the solution of Eq. (1.2). 
We make a replacement of variables with the generating function 

S = p,q + PI ( Q -  f (Pl ,  q)) 

In the new variables, the equations of motion will take the form 

P, = -Ho*q(Pl,q,)+O(Pt)+O(~.), /1 = H:)p +O(Pl)+O(e ) 

= -HoQQQI + QI 2 Fl (PJ, ql, Ql, F.) + Pl Gl (P,, qJ, Pl, Ql, ~') + 0(¢) 

(21 = Pt / ~. + g(Pl,ql ) + QIF2(Pl,qi, Ql,e-) + Pia2 (Pl,qi, Pi,Qi,e) + O(e) 

(2.2) 

where F, G and g are smooth functions which are determined from the replacement of variables. 
We put p(1) = p1/~r~ and make the time replacement x = t/q-d: 

p~ = 0(.~/~), q~ = 0 ( -~ )  

ptl)" = _Hot2QQI +Q? F I + O¢-f~), Q: = p(I) +O('q~) 
(2.3) 

The prime denotes a derivative with respect to x. 
System (2.3) is a classical system with fast and slow variables, and ~fe acts as a small parameter. Owing 

to inequality (1.4), the zeroth solution of the unperturbed system is stable. We can use the general results 
on the evolution of perturbed Hamiltonian systems [4]: a constant K exists such that, in the interval 
0 <~ x <- T/q'd, the following inequality is satisfied 

I PI/~¢-~ I + I Qi I+lpl  -P0 I+lql  -qo  I< K4r~ " 

which confirms the theorem. 

3. THE S E A R C H  FOR A S O L U T I O N  IN T H E  F O R M  OF A S E R I E S  
IN P O W E R S  OF THE S M A L L  P A R A M E T E R  

Quantities of the order of unity on the right-hand side of the last equation of system (2.2) are the 
sum of two terms, one of which vanishes when P1, Q1, = 0. We shall seek a replacement of variables 
that eliminates the free term on the right-hand sides of the final two equations of system (2.2). We begin 
with the free term g(p, q) of the order of unity 
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S = Peqt + (P2 - Eg(P2,qt ))Qt (3.1) 

In the new variables, Eqs (2.2) take the form 

P2 =: - H ; q  (P2, q2 ) + O(/92 ) + O(E), q2 = Hop (p2, q2 ) + O(P)  + O(g) 

='-Hoo.QQ2 +Q~F'+O(P2)+O(E), 02 = P2 IE+O(Q2)+O(P2)+O(E) 
(3.2) 

Here, F, as in Section 2, is a smooth function of the variables P2, q2, and Q2, and of the parameter e. 
Now, the free term in the last two equations is a quantity of the order of e. 

The same replacements will be made as in the proof of the theorem. Then system (3.2) takes the form 

p.~ =: O('9/-E'), q~ = O('~E"), p(2Y = _HoQQQ 2 + Q2p + .9~O(p(2) )  + O(£312 ) 

Q~ = p(2) + ~/~O(Q 2 ) + l~o( pO)) + O(E:B/2) 
(3.3) 

We will assume that the initial conditions satisfy equalities (2.1), and therefore the variables p and 
q are bounded, while P and Q are small. The following estimates (cf. [4]) will be made: we introduce 
the function 

2 Q2 
UoQQQ  )-  I 02 P(O)dO- z= (P + 

0 

By virtue of what has been said in Section 2, Z = O(E) in times of the order of 1/'~/'~. 
It can be verified that, for an arbitrary function Z with respect to the time x, by virtue of system (3.3), 

the following estimate holds 

Z" ~< M4~Z+ Ncs¢24-z (3.4) 

where M and N are positive constants. In fact, since Z = O(e), we have Z l+a ~< Z and ¢t I> 0, and 
consequently all higher powers of P and Q are majorized by the function Z (multiplied, perhaps, by 
some constant). Solving inequality (3.4), we obtain 

r l 4~ dZ r / 4i  
I I at 
o 0 

Therefore, if at the initial instant the function Z was of the order of e 2, then, in the entire time interval 
2) x e [0, T/,~lE], it will be of the same order. Returning to the variables P( and Q2, we establish that they 

3/2 are quantities of tlae order of e. This means that, for the initial system (1.1), P = --e.g(p, q) + O(e ), 
Q = f(p, q) + O(e) is the solution. However, these terms are the first in the power series [2], which can 
be verified by direct substitution. 

Then, making replacements similar to replacement (3.1), the free terms are eliminated successively. 
Let the free terrn of order e in the penultimate equation of system (3.2) be equal to eg~(p, q). 
Replacement with the generating function 

S = P3q2 + P3(Q2 - f.gl(P3,q2) I HOQQ(P3,q2)) 

eliminates the free term of the order of e in the penultimate equation of system (3.2). In the final equation 
of (3.2), the free term, as before, is of the order of e. Suppose it is equal to eg2(p, q); then it is eliminated 
by the replacement 

S =  P4q3 +(P4-£2g2(p4,q3))Q3 
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and so on. In this case we will obtain estimates similar to (3.4), and only power of e in the second term 
of (3.4) will increase: at the kth step this power will be equal to (2k + 1)/2, and consequently ptk) and 
Qk are quantities of the order of e ~. In the initial variables, we obtain the required power series. 

Remark. As a rule, the series obtained is divergent since in the general case it is not possible to eliminate the 
free term [5]. When all the functions are analytical, the coordinates of the free terms may be replaced by a quantity 
of the order of (-1/~). It must be pointed out that, in the procedure described above, in order to eliminate the 
next free term of the order of e k, we make two successive replacements (cf. [5]). 

4. R E A L I Z A T I O N  OF A U N I L A T E R A L  C O N S T R A I N T  

Consider the problem of realizing a unilateral holonomic constraint by elastic forces with a large 
coefficient of elasticity [6, 7]. Suppose the "free" system is specified by the Hamiltonian 

H = H0( p, q, Q) + a(q, Q)p212 + NV(Q) 

Q212, Q<~O N>>I 
V(Q)= O, Q > O '  

(4.1) 

where p, P, q and Q are semigeodesic coordinates in which the unilateral constraint is specified by the 
condition Q t> 0, while the quadratic form of the kinetic energy contains no products o fp  and P. It is 
well-known [8] that such coordinates always exist locally. For simplicity, we shall assume that they are 
introduced globally (cf. [9, 10]). 

The equations of motion have the form 

p=_Hoq-aqP212, t l=Hot,,  Q=aP 

p=-HoQ-aQP212-NQ, Q~<0; /'=-HoQ-aQp212, Q > 0 .  
(4.2) 

Suppose that, in the time interval [0, T], a system with a unilateral constraint moves on the constraint, 
and here, with t ~ [0, T), the constraint reaction is positive, while, at the instant t = T, leaving the 
constraint occurs and here the reaction of the corresponding system with a bilateral constraint has a 
simple zero [7, 10]. 

The solution of system (4.2) in the time interval [0, T] generally fluctuates with amplitude 1/N [7]. 
When investigations an actual system it is necessary to solve the equations of motion in the half-spaces 
Q < 0 and Q > 0 and then to join the solutions. We shall show that, with the appropriate selection of 
the initial conditions of "free" system (4.2) from (I/N) - the vicinity of the initial conditions of the 
corresponding system with a unilateral constraint in any time interval [0, T1] e [0, T), motion occurs 
in the region Q < 0, and the amplitude of the oscillations in this case is a quantity O(N -3/2) for fairly 
large values of the parameter N. 

We will first consider the realization of a bilateral constraint, i.e. we will assume that the potential 
energy of the elastic force V(Q) is equal to Q2/2 in all cases. When t e [0, T), the reaction is positive, 
and consequently H0Q > 0. 

Let us assume that e = 1/N and make a canonical replacement of variables with the generating function 

S = •q + P(Q + IZHoQ(P,q, Q)) 

In the new variables, the equations of motion will take a form similar to that of (2.2), apart from the 
replacement of P by Q, and therefore it is possible to use a similar method to that described in Section 
3 (cf. [9]). In particular, we establish that, with an appropriate choice of the initial conditions 

Q = -EHoQ + O(E 3/2 ) 

and the conjugate momentum will be a quantity of the order of e. 

Remark. It is clear that the estimates obtained here do not contradict the theorem [9] in which the initial conditions 
for P and Q, generally speaking, could be any from the e-vicinity of zero. The "revised" initial conditions physically 
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correspond to placing a point on an elastic surface, waiting while the surface sags and only then pushing the 
point. 

The coordinate Q vanishes when H0o = O(~/e). Thus, we have established that, in the time interval 
[0, T + O~]e)], motion occurs in the half-space Q < 0. It must be noted that here quantities of the 
order of ~/e may be both positive and negative. 

Let us return to the problem of realizing a unilateral constraint. Suppose the reaction is positive at 
the initial instant of time, i.e. H ~  > 0. For any prescribed 0 < 7"1 < T an e exists such that [0, 7"1] E 
[0, T + o(~r~)]. However, in the interval [0, T + O(~/'~)] the motion of "free" system (4.2) will again 
occur in the half-space Q < 0, and theamplitude of the fluctuations about the "equilibrium" Q = --ell00 
will be no more than O(e3/2). Then, in a time interval of the order of x/~, the quantity Q may oscillate 
and then becomes, positive. 

I wish to thank A. I. Neishtadt for useful discussions. 
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